Asymptotic Expansion for Inverse Moments of Binomial and Poisson Distributions
نویسنده
چکیده
An asymptotic expansion for inverse moments of positive binomial and Poisson distributions is derived. The expansion coefficients of the asymptotic series are given by the positive central moments of the distribution. Compared to previous results, a single expansion formula covers all (also non-integer) inverse moments. In addition, the approach can be generalized to other positive distributions.
منابع مشابه
Inverse moments of univariate discrete distributions via the Poisson expansion
In this note we present a series expansion of inverse moments of a non-negative discrete random variate in terms of its factorial cumulants, based on the Poisson-Charlier expansion of a discrete distribution. We apply the general method to the positive binomial distribution and obtain a convergent series for its inverse moments with an error residual that is uniformly bounded on the entire inte...
متن کاملZero inflated Poisson and negative binomial regression models: application in education
Background: The number of failed courses and semesters in students are indicatorsof their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of ...
متن کاملESTIMATION OF PARAMETERS IN THE DISCRETE DISTRIBUTIONS OF ORDER k
This paper considers estimating parameters in the discrete distributions of order k such as the binomial, the geometric, the Poisson and the logarithmic series distributions of order k. It is discussed how to calculate maximum likelihood estimates of parameters of the distributions based on independent observations. Further, asymptotic properties of estimators by the method of moments are inves...
متن کاملIntroducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz
In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کامل